

Specification Approval Sheet

Name: Li-Poly Battery

Model: 30530

SPEC: 3.7V 150mAh

Approved By	Checkup	Make

	Signature	Date
Customor		
Confirmation	Company Name :	
	Stamp :	

436 Kato Terrace, Fremont, CA 94539 U.S.A. Tel: 510.687.0388 Fax: 510.687-0328 www.TenergyBattery.com

436 Kato Terrace Fremont, CA 94539 Tel: 510.687-0388 Fax: 510.687.0328 www.TenergyBattery.com email: sales@tenergybattery.com

1. Schematic of Battery:

ltem	Cell Max (mm)	Pack Max(mm)
Thickness	5.5	5.8
Width	11.5	12.5
Length	41.5	43
Plug	Molex510)21-2P

Specifications and data are subject to change without notice. Contact Tenergy for latest information. ©2010 Tenergy Corporation. All rights reserved.

436 Kato Terrace Fremont, CA 94539 Tel: 510.687-0388 Fax: 510.687.0328 www.TenergyBattery.com email: sales@tenergybattery.com

2. Specifications:

Item		Specifications	Remark	
Typical Capacity		150mAh	25°C, 0.2C5A discharge	
Nominal Voltag	je	3.7 V	25°C, Average Voltage at 0.2C5A discharge	
Charge Current	Standard	0.2C ₅ A	Working temperatur: $0{\sim}40^{\circ}$ C	
	Max	1.0C ₅ A	Working temperatur: $0{\sim}40^{\circ}$ C	
Charge cut-off vol	tage	4.2±0.03V	CC/CV	
Continue discharge current		10C 1.5 A		
Peak discharge Current		20C 3.0 A	Working temperatur: $0{\sim}60^{\circ}$ C	
Discharge cut-off voltage		3.0 V		
Impedance		≤ 200mΩ	25°C, AC 1KHz after 50% charge	
Weight		≤ 3.8g		
	≤1month	-20~45°C		
Storage temperature	≤3month	0~30°C	Best 20+5°C for long-time storage	
	≤6month	20±5°C		
Storage humidity		65±20% RH		

3. General Performance:

Definition of Standard charging method: At $20\pm5^{\circ}$ C, charging the cell initially with constant current 0.2C₅A till voltage**4.2**V, then with constant voltage **4.2V** till current declines to 0.05C₅A.

ltem		Test Methods	Performance	
2.1 0.2C Capacity		After standard charging, laying the battery 0.5h, then discharging	>300min	
5.1	0.20 Capacity	at 0.2C₅A to voltage3.0V, recording the discharging time.	230011111	
27	10C Dischargo	After standard charging, laying the battery 0.5h, then	>E Amin	
3.2 LUC Discharge discharging at 5C ₅ A to voltage 3.0V, recording the discharge		discharging at 5C₅A to voltage3.0V, recording the discharging time.	25.411111	
3.3 Cycle Life		Constant current $1C_5A$ charge to 4.2V, then constant voltage		
	Cuelo Life	charge to current declines to 0.05C₅A, stay 5min, constant	>200timos	
	current 1C ₅ A discharge to3.0V, stay 5min. Repeat above steps till	≥500times		
		continuously discharging time less than 36min.		
	Capability of	20±5°C, After standard charging, laying the battery 28days,		
3.4	keeping	discharging at $0.2C_5A$ to voltage 3.0V, and recording the	≥240min	
	electricity	discharging time.		

Specifications and data are subject to change without notice. Contact Tenergy for latest information. ©2010 Tenergy Corporation. All rights reserved.

436 Kato Terrace Fremont, CA 94539 Tel: 510.687-0388 Fax: 510.687.0328 www.TenergyBattery.com email: sales@tenergybattery.com

4. Environment Performance:

Item		Test Methods	Performance
4.1	High temperature	After standard charging, laying the battery 4h at 60° C, then discharging at $0.2C_5$ A to voltage3.0V, recording the discharging time.	≥240min
4.2	Low temperature	After standard charging, laying the battery 4h at - 20° C, then discharging at 0.2C ₅ A to voltage3.0V, recording the discharging time.	≥210min
4.3	Constant humidity and temperature	After standard charging, laying the battery 48h at 40±2 $^\circ\!C$, RH 93±2%. Recording 0.2C5A discharging time	No distortion No electrolytes leakage ≥270 min
4.4	Temperature shock	After standard charging, battery stored at -20 $^\circ\!C$ for 2 hours, then stored at 50 $^\circ\!C$ for 2 hours. Repeat 10 times.	No electrolytes leakage

5. Mechanical Performance:

ltem		Test Methods	Performance
5.1	Vibration	After standard charging, put battery on the vibration table. 30 min experiment from X, Y, Z axis. Scan rate: 1 oct/min; Frequency 10-30Hz, Swing 0.38mm; Frequency 30-55Hz, Swing 0.19mm.	No influence to batteries' electrical performance and appearance.
5.2	Collision	After vibration test, batteries were laying on the vibration table about X, Y, Z axis. Max frequency acceleration: 100m/s ² ; collision times per minutes: 40~80; frequency keeping time 16ms; all collision times 1000±10.	No influence to batteries' electrical performance and appearance.
5.3	Drop	Random drop the battery from 10m height onto concrete one times.	No explosion or fire

6. Safety Test:

Test conditions: The following tests must be measured at flowing air and safety protection conditions. All batteries must standard charge and lay 24h.

Item		Test Methods	Performance
6.1	Over charge	At $20\pm5^{\circ}$ C, charging batteries with constant current $3C_5A$ to voltage 4.2V, then with constant voltage 4.8V till current decline to 0. Stop test till batteries temperature 10° C lower than max temperature.	No explosion or fire
6.2	Over discharge	At 20±5 $^\circ\!\mathbb{C}$, discharge battery with 0.2C5A continuously 12.5h.	No explosion or fire
6.3	Short-circuit	At 20±5 $^\circ\! {\mathbb C}$, connect batteries anode and cathode by wire which impedance less than 50m Ω , keep 6h.	No explosion or fire

Specifications and data are subject to change without notice. Contact Tenergy for latest information. ©2010 Tenergy Corporation. All rights reserved.

436 Kato Terrace Fremont, CA 94539 Tel: 510.687-0388 Fax: 510.687.0328 www.TenergyBattery.com email: sales@tenergybattery.com

6.4	Extrusion	At $20\pm5^{\circ}$ C, put the battery in two parallel steal broad, add pressure 13kN.	No explosion or fire
6.5	Thermal shock	Put the battery in the oven. The temperature of the oven is to be raised at $5\pm1^{\circ}$ C per minute to a temperature of $130\pm2^{\circ}$ C and remains 60 minutes.	No explosion or fire

7 Cautions of charge & discharge

7.1 charge

Charging current should be lower than values that recommend below. Higher current and voltage charging may cause damage to cell electrical, mechanical, safety performance and could lead heat generation or leakage.

- (1) Batteries charger should charge with constant current and constant voltage mode;
- (2) Charging current should be lower than (or equal to) 1C5A;
- (3) Temperature $0 \sim 45^{\circ}$ C is preferred when charging;
- (4) Charging voltage must be lower than 4.2V.

7.2 discharge

- (1) Temperature $0 \sim 60^{\circ}$ C is preferred when discharging;
- (2) Discharging voltage must not be lower than 3.0V.
- 7.3 over-discharge

It should be noted that the cell would be at an over-discharge state by its self-discharge. In order to prevent over-discharge, the cell shall be charged periodically to keeping voltage between 3.6-3.9V. Overdischarge may cause loss of cell performance. It should be noted that the cell would not discharge till voltage lower than 2.5V.

8. Storage of polymer lithium-ion batteries

The environment of long-time storage:

Temperature: 20±5°C;

Humidity: 45-85%;

Batteries were 40 \sim 60% charged.

The battery had better charge a time per three month during its storage for avoiding over discharge. If storage is long time, please charge the battery with constant current $0.5C_5A$ for 1 hour so that it has some storage of charge for properly using.

Charge and discharge afresh to active and renew battery energy after storage above 1 year.

In case of over-discharge, batteries should be charged for one time every 3 months while storing. Batteries should be discharged and charged after being stored more than a year in order to activate it and restore energy.

9. Transportation of polymer lithium-ion batteries

The batteries should transportation with 10 \sim 50% charged states. Batteries must be properly packed to avoid short circuiting

436 Kato Terrace Fremont, CA 94539 Tel: 510.687-0388 Fax: 510.687.0328 www.TenergyBattery.com email: sales@tenergybattery.com

10. Others

Short-circuit is strictly prohibited. It should damage batteries badly.

The battery should be fixed to the battery pack by its large surface area. No cell movement in the battery pack should be allowed.

The cell replacement should be done by professional people. Prohibit short-circuit between cells' Al package and exterior component.

The batteries must be careful of proceed the operation for it's soft package. Please note cautions below to prevent cells' leakage, heat generation and explosion.

Prohibition of disassembly pack and cells;

Prohibition of pack and cells immersion into liquid such as water or seawater;

Prohibition of dumping pack and cells into fire;

Prohibition of using damaged cells. The cells with a smell of electrolyte or leakage must be placed away from fire to avoid firing.

In case of electrolyte leakage contact with skin, eye, and physicians shall flush the electrolyte immediately with fresh water and medical advice is to be sought.